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1 Introduction

This paper has two goals, one theoretical, one empirical. First, we develop
a Student-t latent factor mixture model. This model has many potential
applications, but we developed it in order to estimate excess asset returns
and study risk premia. The passage from theory to practice is non-trivial
and we shall deal with several challenges as we progress. In this introduction
we provide some background, both on mixture models and asset returns.

Mixture distributions provide a convenient and intuitively appealing way
of capturing a wide array of distributional forms, see e.g. Titterington et al.
(1985), McLachlan and Basford (1988), McLachlan and Peel (2000), Boldea
and Magnus (2009), and Rossi (2014). A prominent class is the mixture of
normals. Despite their flexility, however, normal mixtures sometimes fail to
capture certain features of the data, in particular behavior in the tails.

A natural extension is the mixture of Student-t distributions. The t-
distribution is similar to the normal, but has fatter tails (higher kurtosis).
The degree of kurtosis is controlled by a single parameter, the degrees of
freedom, and in the limiting case (with infinite degrees of freedom) the t and
normal distributions coincide. A t-mixture thus encompasses the normal
mixture as a special case. Mixtures of t-distributions have been studied by
various authors, including McLachlan and Peel (1998), Peel and McLachlan
(2000), Wang et al. (2004), Mclachlan et al. (2006), Gerogiannis et al. (2009),
Galimberti and Soffritti (2014), and Zeller et al. (2015).

The model we present here has two features that set it apart from the
existing literature. First, we employ a latent factor structure. Conceptually
we thus think of the vector of observables as being generated by a (much)
smaller collection of factors. Latent factor models provide both computa-
tional and conceptual benefits. A high-dimensional model can be estimated
quite easily if the number of factors is relatively small. In addition, as in
any statistical exercise, the more structure imposed, the more precise the
results will be. In our case, the structure provides us with stronger inference
especially on assets for which we only have a limited return history.

The second feature is our use of a prior distribution, tailored to our partic-
ular application. We use a prior on both the means and standard deviations
of each individual asset. This adds plausibility to our results, a crucial fea-
ture of any distribution of asset returns; see e.g. Black and Litterman (1992).
Without constraints, models of asset returns can quite easily lead to results
that are difficult to believe.
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Estimation of models with latent factors is typically performed using
an Expectation-Maximization (EM) algorithm, which locates the posterior
mode. We, in contrast, use direct numerical optimization, where we employ
the derivative of the posterior kernel, which we calculate analytically. We
also provide a method for simulating the full posterior distribution, as well as
a normal approximation to the posterior which appears to be fairly accurate.

In the empirical part we estimate the distribution of global asset class
returns and study implied risk premia. A vast literature in empirical finance
focuses on identifying the main risk factors that drive excess asset returns;
see e.g. Cochrane (2011) for an overview. The typical approach is to select
a relatively small number of factor portfolios, and then check whether the
returns on a larger collection of assets can be explained by their exposures to
these factors. Fama and French (1993), for example, study returns on twenty-
five US stock and seven US bond portfolios using a model with three stock
and two bond factors. The debate revolves around the most appropriate
choice of factors, i.e. the right-hand-side variables in a factor regression.

Risk premia are intrinsically linked to mean-variance optimization: if
a factor premium exists, then a mean-variance-optimal investor should tilt
his/her portfolio toward assets exposed to that factor. Under heroic theoret-
ical assumptions the mean-variance-optimal (MVO) portfolio coincides with
the ‘market’ portfolio, i.e. the value-weighted total of all tradable assets. A
risk premium is defined as a tilt away from the market portfolio and toward
a particular exposure.

In this paper we study risk premia using this connection between premia
and MVO portfolio tilts. Rather than estimating and comparing results for a
potentially large number of factor regressions, we instead estimate the joint
distribution of asset returns, from which we then back out the risk premia.
We can thus bypass entirely the discussion regarding which factors belong
on the right-hand side of a factor regression model.

For our examination of risk premia it is important that we span the global
universe of investable assets. If we would omit important assets we could
well end up with mistaken inferences. For example, if we only examined US
stocks, we might find a premium for (i.e. a tilt toward) small companies.
But it could well be that this tilt disappears if we can invest in a global asset
portfolio.

A large proportion of the literature on risk premia has focused on US
stocks, and we focus on this area of the market as well. Many risk factors
have been proposed, analyzed, and debated. We will concentrate on the five
most prominent ones: valuation, size, recent performance (i.e. momentum),
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quality, and volatility/beta. All our US stock data come from the well-known
Fama-French database.

There are various ways of quantifying the degree to which a stock price
is low, including the book-to-market ratio, earnings-to-price ratio, dividend
yield, and cash flow yield. We include five portfolios sorted by book-to-
market ratio. For firm size there is less debate about an appropriate defini-
tion; we include five portfolios sorted by total market capitalization. Refer-
ences for the value and size premia are numerous, and include Banz (1981),
Rosenberg et al. (1985), Chan et al. (1991), and Fama and French (1992,
1993, 1996).

For momentum we include ten portfolios sorted by performance during
the preceding year, excluding the most recent month. References for the
momentum premium include Jegadeesh and Titman (1993, 2011), Carhart
(1997), Fama and French (2012), Novy-Marx (2012), Asness et al. (2013),
and Barroso and Santa-Clara (2015).

A recent literature has argued that firm ‘quality’ carries a risk premium.
Quality can be defined in a variety of ways. We include five portfolios sorted
by recent investment scaled by firm size. We also include five portfolios
sorted by recent operating profitability scaled by the book value of equity.
References for the quality premium include Haugen and Baker (1996), Cohen
et al. (2002), Fairfield et al. (2003), Titman et al. (2004), Novy-Marx (2013),
Hou et al. (2014), Fama and French (2015), and Asness et al. (2015).

Finally, it is thought that there may be a premium for stocks with low
market betas, which more or less coincides with low-volatility stocks. We
include five portfolios sorted by market beta, where beta is estimated using
up to five years of previous monthly returns, with a two-year minimum.
References for the low-volatility premium include Ang et al. (2006, 2009),
Baker et al. (2011), Frazzini and Pedersen (2014), and Ciliberti et al. (2015).

We also include ten US sector-specific stock portfolios.

Given the scale of the model, estimation of the full posterior is not feasible.
We therefore base our results solely on the posterior mode. This requires that
the mode provides an adequate approximation to the inference we would
obtain if we did incorporate all posterior uncertainty. To check this, we
estimate the full posterior, but for a much smaller version of the model.
We find posterior uncertainty to be small, and so the estimates based on the
mode alone are a close approximation to the posterior predictive distribution.

Our estimation results provide several findings. The MVO portfolio
has an annualized expected excess return of 14.42%, standard deviation of
10.49%, and hence a Sharpe ratio of 1.36. It has several sizable short posi-
tions, especially in foreign stocks, and a strong net long position in bonds,
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especially US government bonds and investment grade corporates. There is
clear evidence of a momentum premium, a low-beta premium, and a qual-
ity premium as measured by profitability. We do not find clear evidence of
a value premium or a premium for high-investment stocks. Regarding the
size premium, there appears to be a tilt away from the largest firms toward
mid-size and smaller mid-size firms.

We also examine MVO portfolios under long-only constraints. Here we
find that the constraints are binding for many assets, leading to highly con-
centrated optimal portfolios. For US stocks the main assets with positive
weights are high-momentum stocks and stocks in the utilities and non-durable
goods sectors. We estimate various versions of the model and find our results
to be fairly robust across alternative specifications.

The plan of this paper is as follows. In Section 2 we present the model and
in Section 3 we discuss our estimation method. In Section 4 we introduce our
empirical application, while Section 5 contains our main results. In Section 6
we examine the sensitivity of our findings. Section 7 concludes. There are
two mathematical appendices.

2 Model and priors

We are interested in an n-dimensional vector of observables x, whose dis-
tribution depends on three latent (hence unobserved) variables: a random
m-dimensional vector z (the latent factors), a precision parameter v, and a
state parameter s. More precisely,

x | (z, v) ∼ Nn(Bz, (1/v)Ψ), v ∼ Γ(ν/2, ν/2),

and, for i = 1, . . . , g,

z | (v, s = i) ∼ Nm(µi, (1/v)Vi), Pr(s = i) = πi.

The n×m matrix B contains the factor loadings associated with the latent
factors z.

The latent variables z, v, and s are not considered parameters of our
model. Instead, we obtain the distribution of x by integrating them out:

p(x) =

g∑
i=1

∫∫
p(x | z, v) p(z | v, s = i) p(v) Pr(s = i) dv dz,

where the symbol p denotes a density function and will be used generically.
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Since we have chosen the parameters in the gamma distribution for v
such that ‘shape’ equals ‘rate’, the combination of a normal likelihood with a
gamma prior on the precision leads to a Student distribution, in this case to
the multivariate Student-t mixture distribution (Kotz and Nadarajah, 2004;
McLachlan et al., 2006) defined by

p(x) =

g∑
i=1

πipi(x) (1)

and

pi(x) =
Γ[(νi + n)/2]

Γ(νi/2)(πνi)n/2
· |Wi|−1/2

[1 + δi(x)/νi](νi+n)/2
, (2)

where
δi(x) = (x−mi)

′W−1
i (x−mi) (3)

and
mi = Bµi, Wi = BViB

′ + Ψ. (4)

The πi are weights satisfying πi > 0 and
∑

i πi = 1. We shall assume,
for simplicity, that Ψ is diagonal and that νi = ν > 2 for all i. We also
assume that m, g, and ν are chosen in advance; they are not parameters to
be estimated. In practice one would choose m to be much smaller than n,
thus reducing the dimension of the model.

The set of parameters is then given by

θ = {B,Ψ, {πi, µi, Vi}gi=1}.

The model as stated is not identified. First, as with any mixture distribution,
the labels of the mixture components can be switched arbitrarily. In addition
we can, for any non-singular m×m matrix M , transform the parameters by

µ∗i = Mµi, V ∗i = MViM
′, B∗ = BM−1,

and retain the exact same data-generation process. The lack of identification
is, however, no concern for purposes of estimation and inference since all
parameters that we are interested in are identified.

Letting m̄ and W̄ denote the mean and variance of x, respectively, we
have

m̄ =

g∑
i=1

πimi, W̄ =

g∑
i=1

πi

(
ν

ν − 2
Wi + (mi − m̄)(mi − m̄)′

)
. (5)

Let m̄j be the jth component of m̄ and let w̄2
j be the jth diagonal element

of W̄ . We wish to incorporate prior distributions for the means m̄j and
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standard deviations (not variances) w̄j of each xj. Specifically we assume,
for j = 1, . . . , n:

m̄j ∼ N(ρ, τ 2), w̄j ∼ exp(η), (6)

where {ρ, τ, η} are hyperparameters to be chosen in advance. Note that
we impose priors not on the parameters themselves, but on functions of the
parameters. Note also that the choice of prior for w̄j implies that the precision
1/w̄2

j follows a Fréchet (or inverse Weibull distribution); see Gumbel (1958).
We shall see in Section 6 that our results are not sensitive to the specific
shape of the priors. This is why we choose for the simplest among sensible
specifications for the prior distributions.

3 Estimation

From here on we write the density (likelihood) p(x) discussed in the previous
section as p(x | θ). Given a sample xobs1 , . . . , xobsT of independent and identi-
cally distributed (iid) observations from this distribution, we write the joint
likelihood as p(Xobs | θ), where Xobs contains all observed data. The log-
likelihood of the sample is then log p(Xobs | θ) =

∑
t log p(xobst | θ). In fact,

we don’t observe all n components of each xobst , but only an nt-dimensional
subset xobs(t) = S ′tx

obs
t , where St is an n×nt selection matrix. The vectors xobs(t)

are now no longer iid, but they are still independent. The log-likelihood thus
becomes

log p(Xobs | θ) =
T∑
t=1

log p(xobs(t) | θ), (7)

where it will be convenient, using (1)–(3), to express p(xobs(t) | θ) as

p(xobs(t) | θ) =

g∑
i=1

πie
−λit(θ)/2, (8)

where
λit(θ) = λ0t + log |S ′tWiSt|+ (ν + nt) log(1 + δit/ν) (9)

and
δit = (xobs(t) − S ′mi)

′(S ′WiS)−1(xobs(t) − S ′mi), (10)

and λ0t is an (irrelevant) constant.
The log-posterior kernel is then given by the log-likelihood plus the log-

prior, which takes the form (ignoring constants):

log p(θ) = − 1

2τ 2

n∑
j=1

(m̄j − ρ)2 − η
n∑
j=1

w̄j. (11)
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Before we turn to estimation, we need to perform three transformations of
the parameters. First, the mixture probabilities πi need to be positive and
sum to one. This is achieved by writing

πi =
ξ2
i∑g

j=1 ξ
2
j

(i = 1, . . . , g), (12)

where we normalize, without loss of generality, ξ1 = 1. Next, each variance
matrix Vi needs to be symmetric and positive definite. We therefore let

Vi = ṼiṼ
′
i + κ1Im,

where Ṽi is lower triangular and κ1 is a given small positive number. Finally,
the diagonal components of Ψ must be strictly positive. We write

Ψ = Ψ̃2 + κ2In,

where Ψ̃ is diagonal and κ2 is a given small positive number. Optimization
is performed with respect to {B, Ψ̃, {ξi}gi=2, {µi, Ṽi}

g
i=1}, in total

N = n(m+ 1) + g(m+ 1)(m+ 2)/2− 1

parameters. The parameters are ordered in an N × 1 vector θ with compo-
nents

ξ2, . . . , ξg (g − 1 parameters)

µ1, . . . , µg (gm parameters)

vech(Ṽ1), . . . , vech(Ṽg) (gm(m+ 1)/2 parameters)

vecB (nm parameters)

dg(Ψ̃) (n parameters),

where, for any square matrix A, vecA denotes the vector which stacks the
columns of A one underneath the other, vech(A) is obtained from vecA by
deleting all supradiagonal elements of A, and dg(A) is the vector containing
only the diagonal elements of A. In our application, n = 136, m = 30, and
g = 6, so that N = 7191. The estimation method must therefore be able to
deal with a large number of parameters.

Ideally, one would like to generate the complete posterior distribution.
This is not feasible, however, given the large dimension of the model. The
next best thing is to find key moments of the posterior distribution, in par-
ticular the mean µ(Xobs) and the variance Σ(Xobs).
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Let us denote the score and the Hessian of the log-likelihood as

q(l)(θ,X
obs) =

∂ log p(Xobs | θ)
∂θ

, H(l)(θ,X
obs) =

∂2 log p(Xobs | θ)
∂θ ∂θ′

,

of the log-prior as

q(p)(θ) =
∂ log p(θ)

∂θ
, H(p)(θ) =

∂2 log p(θ)

∂θ ∂θ′
,

and of the log-posterior as

q(θ,Xobs) =
∂ log p(θ | Xobs)

∂θ
, H(θ,Xobs) =

∂2 log p(θ | Xobs)

∂θ ∂θ′
.

We estimate the posterior mean by the posterior mode θ̄. The mode is found
by maximizing the log-posterior kernel and satisfies the equation

q(θ̄, Xobs) = q(l)(θ̄, X
obs) + q(p)(θ̄) = 0.

We use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, as imple-
mented in the optim function in R, to solve this large non-linear optimization
problem. The BFGS algorithm is a quasi-Newton method requiring the gra-
dient but not the Hessian, which is approximated using rank-one updates
specified by (approximate) gradient evaluations. We thus need the gradient
and we obtain explicit expressions for q(l) and q(p) in Appendices A and B.

We also need good starting values for the parameters. These are obtained
as follows. First, we estimate a normal (rather than Student-t) version of the
model using only one (rather than six) mixture components, where we initial-
ize the loadings matrix B and factor means µ using an eigendecomposition
of the empirical correlation matrix. We then update the values for {B,Ψ, µ}
and we use these to calculate ‘best guesses’ for the latent factors. Next, we
estimate a normal multivariate mixture model on these factor guesses with
g = 6 components, using an Expectation Maximization (EM) algorithm; see
e.g. Rossi (2014, p. 10) for details. We run the EM algorithm 25 times, then
choose the result with the highest likelihood value. This gives us starting
values for all parameters, including {πi, µi, Vi}gi=1.

To approximate the posterior variance we first note that a second-order
Taylor expansion of the log-posterior kernel around θ̄ shows that θ | Xobs is
approximately normal with mean θ̄ and variance −H−1(θ̄, Xobs). Then, we
approximate H(θ̄, Xobs) as follows:

H(θ̄, Xobs) = H(l)(θ̄, X
obs) +H(p)(θ̄) ≈ H(l)(θ̄, X

obs)

≈ EX|θ̄ [H(l)(θ̄, X)] = − varX|θ̄ [q(l)(θ̄, X)],
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where the first equality is true by definition, the first approximation holds
because the prior is approximately linear (in fact approximately constant)
for θ close to θ̄, the second approximation is valid if the observed Hessian
is well approximated by the expected Hessian, and the final equality follows
by second-order regularity (information matrix equality); see Berger (1985,
pp. 224–225) for a similar argument and further references.

The variance of the score of the likelihood is not available in closed form,
but we can compute it with arbitrary precision by repeatedly sampling from
p(X | θ̄). The posterior variance Σ(Xobs) is then obtained as the (Moore-
Penrose) inverse Q+ of Q = varX|θ̄ [q(l)(θ̄, X)]. Note that we don’t need an
explicit expression for the Hessian of the log-likelihood and the log-prior to
obtain the posterior variance using this method.

We shall see in Section 6 that this procedure works well in practice and
that, in fact, the posterior distribution p(θ | Xobs) is well approximated by
the normal distribution φ(θ̄, Q+).

4 Excess asset returns: data and priors

We shall estimate the joint distribution of excess returns for n = 136 assets
spanning the global investable universe. We categorize these into nine major
classes, listed in Table 1.

name index range
1 US stock 1–45
2 Non-US stock 46–96
3 US government bonds 97–114
4 Non-US government bonds 115–117
5 Investment grade bonds 118–123
6 High yield bonds 124–127
7 Inflation-linked bonds 128–129
8 Real Estate Investment Trust 130–131
9 Commodities 132-136

Table 1: Major asset classes

We use monthly returns in excess of the risk-free rate, for which we use
1-month Treasury Bills. The earliest data are from January 1970, the latest
from November 2015. We obtain our US stock return data from the Fama
and French data library, which can be found at

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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All other data come from Morningstar.
After estimation we apply a modification to the estimated distribution,

namely a truncation. Returns cannot be less than −100%, and so we cut
off the left tail of each asset’s distribution. We also cut off returns that are
implausibly high, setting a maximum of 200%. We find that these truncations
eliminate 0.4% of the distributional mass. This cut-off is not incorporated in
the likelihood function.

Parameter n m g ν ρ τ η
Value 136 30 6 10 5 4 25

Table 2: Fixed parameters

Table 2 contains our choice of fixed (not to be estimated) parameters,
where we have multiplied both ρ and τ by 1200, so that they correspond
with annualized percentage scale. Our choice for the number of factors m is
based on the eigendecomposition of the empirical correlation matrix: we im-
pose that the first m factors capture 97.5% of the total empirical correlation.

FIGURE 1 HERE

Figure 1 shows the two prior distributions: N(5, 16) for the prior mean and
exp(25) for the prior standard deviation. We set κ1 = κ2 = 10−5.

5 Empirical results

Given the model, priors, and initial conditions, we estimate all N = 7191
parameters. We locate the posterior mode through numerical optimization,
and base our main results solely on the model implied by the mode. Our
primary interest is in the mean m̄ and the (diagonal elements of the) variance
matrix W̄ , as defined in (5).

FIGURE 2 HERE

For each of the n = 136 assets we plot the mean m̄j against the standard de-
viation w̄j in Figure 2. We also calculate the mean-variance frontier, shown
as the solid black line, where we have normalized the risk-free rate at zero.
The round black dot indicates the portfolio with the highest Sharpe ratio,
which is thus mean-variance optimal, also known as the tangency portfolio.
The MVO portfolio has an annualized expected excess return of 14.42%, a
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standard deviation of 10.49%, and hence a Sharpe ratio of 1.36. The fron-
tier is almost linear, indicating that many alternative portfolios are close to
achieving the optimal Sharpe ratio.

Portfolios on the frontier are allowed to have unlimited short positions.
Shorting assets is not always straightforward however, and so we also examine
the frontier for long-only portfolios. This is shown by the dashed line. Not
surprisingly points on the constrained frontier have lower Sharpe ratios, in
particular for investors who seek relatively high returns. The highest long-
only expected return is provided by Japanese Small Value stocks, namely
10.7% with a Sharpe ratio of 0.26.

Let us consider the points in Figure 2 more closely. Our results are in
general agreement with the literature. Bonds tend to have lower returns,
especially US government bonds. Corporate bonds have higher returns than
US government bonds, and high-yields have higher returns than investment-
grades. Stocks, especially foreign stocks, have the highest returns. There
is no simple positive relationship between means and standard deviations,
and we shouldn’t expect there to be, since high returns only compensate
for an asset’s systematic risk. In particular, some foreign stocks have high
volatilities, but not necessarily high expected returns. One stock asset has
negative expected returns: the lowest decile of momentum-sorted US stocks.
Here the data is simply too strong to convince us otherwise: we have 45 years
of data on this asset, with an average annualized excess return of −3.1%.

Estimated means are (almost) all positive, even though the empirical
means are sometimes negative. This is because our model induces shrinkage,
both through the factor structure and through the priors. A certain amount
of shrinkage thus increases the plausibility of our results. Standard deviations
are mostly higher than their corresponding sample moments. We also looked
at various percentiles, in particular the 5th, 20th, 80th, and 95th percentile.
For all percentiles, but especially the 5th and 95th, the model indicates a
somewhat greater likelihood of extreme returns than the data. This may, in
fact, be a realistic outcome of a model forecasting asset returns.
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total long total short net long
US stock 113.7 87.6 26.1
Non-US stock 209.6 219.6 −9.9
US govt bonds 58.1 44.2 13.9
Non-US govt bonds 31.1 14.6 16.5
IG bonds 36.0 4.4 31.7
HY bonds 28.9 0.2 28.7
Infl-linked bonds 0.9 8.2 −7.3
REIT 1.4 0.0 1.4
Commodities 1.3 2.3 −1.0

Table 3: Mean-variance optimal weights (%), unconstrained portfolio

Next, let us study the unconstrained MVO portfolio in more detail. Ta-
ble 3 shows its composition. The column ‘net long’ is the difference of the
columns ‘total long’ and ‘total short’, and adds up to 100%. Portfolio weights
are aggregated by major assets. We see that the MVO portfolio has a strong
net long position in bonds, especially US government bonds and investment
grade corporates.

Expected return 2% 4% 6% 8%
US stock 5.8 12.7 19.9 43.2
Non-US stock 5.2 11.0 17.1 23.6
US govt bonds 68.1 33.5 10.4 0.0
Non-US govt bonds 2.5 5.3 7.3 33.2
IG bonds 10.2 19.4 15.0 0.0
HY bonds 3.8 8.7 15.2 0.0
Infl-linked bonds 3.8 8.4 13.9 0.0
REIT 0.0 0.0 0.0 0.0
Commodities 0.5 1.0 1.2 0.0

Table 4: Mean-variance optimal weights (%), long only

Table 4 shows the compositions of long-only portfolios for four expected
returns. When the expected return increases, the portfolio standard devia-
tion increases as well, and as we can see from the dashed line in Figure 2,
higher expected returns lead to lower Sharpe ratios. We see from Table 4
that higher expected returns require increasing concentrations in stocks and
foreign government bonds.
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unconstrained 2% L/O 4% L/O 6% L/O 8% L/O
size1 2.4 0.0 0.0 0.0 0.0
size2 23.1 0.0 0.0 0.0 0.0
size3 29.1 0.0 0.0 0.0 0.0
size4 4.3 0.0 0.0 0.0 0.0
size5 −63.2 0.0 0.0 0.0 0.0
value1 −15.4 0.0 0.0 0.0 0.0
value2 11.3 0.0 0.0 0.0 0.0
value3 11.4 0.0 0.0 0.0 0.0
value4 15.9 0.0 0.0 0.0 0.0
value5 3.8 0.0 0.0 0.0 0.0
Beta1 35.3 0.0 0.0 0.0 0.0
Beta2 33.2 0.0 0.0 0.0 0.0
Beta3 4.2 0.0 0.0 0.0 0.0
Beta4 −15.3 0.0 0.0 0.0 0.0
Beta5 −21.8 0.0 0.0 0.0 0.0
OP1 −20.6 0.0 0.0 0.0 0.0
OP2 −1.6 0.0 0.0 0.0 0.0
OP3 1.0 0.0 0.0 0.0 0.0
OP4 8.5 0.0 0.0 0.0 0.0
OP5 39.8 0.0 0.0 0.0 0.0
inv1 5.5 0.0 0.0 0.0 0.0
inv2 19.3 0.0 0.0 0.0 0.0
inv3 23.6 0.0 0.0 0.0 0.0
inv4 −1.9 0.0 0.0 0.0 0.0
inv5 −17.7 0.0 0.0 0.0 0.0
Mom1 −23.1 0.0 0.0 0.0 0.0
Mom2 −41.1 0.0 0.0 0.0 0.0
Mom3 −20.3 0.0 0.0 0.0 0.0
Mom4 −12.9 0.0 0.0 0.0 0.0
Mom5 −4.7 0.0 0.0 0.0 0.0
Mom6 5.9 0.0 0.0 0.0 0.0
Mom7 18.2 0.0 0.0 0.0 0.0
Mom8 28.2 0.0 0.0 0.0 0.0
Mom9 30.9 19.8 21.3 21.6 11.9
Mom10 18.1 0.0 0.0 1.1 28.2
NoDur 15.6 53.6 52.1 48.3 20.9
Durbl 0.7 0.0 0.0 0.0 0.0
Manuf 7.1 0.0 0.0 0.0 0.0
Enrgy 3.1 0.0 0.0 0.0 0.0
HiTec 22.0 0.0 0.0 0.0 0.0
Telcm 4.3 0.0 0.0 0.0 0.0
Shops 5.4 0.0 0.0 0.0 0.0
Hlth −9.7 0.0 0.0 0.0 0.0
Utils 5.3 26.6 26.6 29.0 39.1
Other −67.1 0.0 0.0 0.0 0.0

Table 5: Mean-variance optimal weights (%). L/O = Long Only
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We now focus our attention on the US stock segment of these optimal
portfolios. Table 5 shows the optimal portfolio weights, where we have
normalized the weights such that in each case they sum to 100%. In this
table, x1–x5 refers to portfolios sorted from smallest to largest quintiles
for respectively market capitalization, book-to-market ratio, market beta,
operating profitability, and investment. Mom1–Mom10 refers to portfolios
sorted by momentum deciles. The sectors are respectively Consumer Non-
Durables; Consumer Durables; Manufacturing; Oil, Gas, and Coal Extraction
and Products; Business Equipment; Telephone and Television Transmission;
Wholesale, Retail, and Some Services (Laundries, Repair Shops); Health
Care, Medical Equipment, and Drugs; Utilities; Other (Mines, Construc-
tion, Building Materials, Transportation, Hotels, Business Services, Enter-
tainment, and Finance).

Do we notice any evidence of risk premia, i.e. tilts? Strictly speaking,
in order to distinguish a tilt, we need to know the market portfolio; see
e.g. Doeswijk et al. (2014). However, our results provide sufficiently strong
indications for tilts, so that a formal comparison with the market does not
seem necessary.

The unconstrained optimal portfolio broadly confirms the risk premia
proposed in the literature. We see tilts away from large caps and toward
mid-size and smaller mid-size firms, except the very smallest firms. Interest-
ingly, the portfolio does not clearly tilt toward high-value stocks. There are,
however, clear tilts toward low-beta companies, companies with high prof-
itability, and high momentum. There is no clear tilt toward high investment
firms.

The long-only portfolios paint a rather different picture. The constraints
are binding for a large number of assets, and the resulting portfolios are
highly concentrated. Specifically, the highest momentum stocks are impor-
tant, especially for investors seeking high expected returns. Besides this,
long-only investors should concentrate on stocks in the non-durables and
utilities sectors.

6 Sensitivity analysis

In this study we have made many assumptions, and we now ask how sensitive
our results are to these assumptions, including our choice of (prior) parame-
ters, our choice of model, and more. We begin by estimating variants of the
baseline model, where each variant uses an alternative choice for one of the
parameters.
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Parameter n m g ν τ η
Baseline value 136 30 6 10 4 25
Alternative value 10 20 3 100 1 50

Table 6: Sensitivity analysis: alternative parameters

Table 6 shows the alternative parameters compared to the baseline pa-
rameters, where τ is multiplied by 1200 (as before).

Relevance of Student-t mixtures

We introduced Student-t mixtures, which are more complicated than normal
mixtures. Is this added complication worth it? Let us call the model with
ν = 100 the ‘normal’ model. In the normal model, in contrast with our
baseline model, the percentiles of the most extreme data points in the sample
are (machine) zero. This suggests that, at least for our data, a student
mixture is preferable to a normal mixture, since a normal mixture fails to
capture suitable behavior in the tails. Hence, the results are sensitive with
respect to a simplification to normality.

Relevance of priors

We have introduced priors on the posterior means and standard deviations.
How relevant are these priors?

FIGURES 3 AND 4 HERE

If we estimate the model without any priors then some of the means be-
come very large. The same is true (but to a lesser extent) for the standard
deviations. This is shown in Figures 3 and 4, respectively. In the model with
a tight prior on the means (τ = 1), the means are of course more tightly
concentrated around the prior mean (= 5). In the model with a tighter prior
on the standard deviations (η = 50) we find smaller standard deviations, but
not too pronounced (obviously an even tighter prior would have a stronger
effect). Interestingly, the normal mixture model has the lowest estimated
standard deviations, even compared to the model with a stronger prior on
standard deviations.

We also experimented with different functional forms for the priors. It
turns out that the parameter values are much more important than the func-
tional form.
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Number of mixture components

Reducing the number of mixture components from g = 6 to g = 3 creates a
model with fewer parameters, and therefore stronger shrinkage. The effects
on the means and standard deviations is not large, however. Hence, there is
little indication that we should increase the number of mixture components.

Number of factors

The same is true when we reduce the number of latent factors from m = 30
to m = 20, as we can see from Figures 3 and 4.

Risk premia

How sensitive are our results regarding the unconstrained MVO portfolio and
the implied risk premia?

FIGURE 5 HERE

The optimal weights for all models are shown in Figure 5. There are some
differences between the models, although it should be noted that portfolios
with different weights could in fact have very similar risk characteristics. If
we look at risk premia we find that the normal model, the model without a
prior, and the η = 50 give fairly similar results to the baseline. In contrast,
the g = 3, m = 20, and τ = 1 models appear to be rather different than the
baseline model. Interestingly, we see that reducing the number of mixtures
g or the number of factors m does not seem to have a large effect on the
expected means and standard deviations, but they do affect the risk premia.

MVO portfolio

Suppose our baseline model is ‘true’, then how bad would investment advice
be if we believed a ‘wrong’ model?

FIGURE 6 HERE

In figure 6 we show the MVO portfolios implied by each model, assuming
that our baseline model is the true model. Although using a ‘wrong’ model
may not be a disaster, the differences are far from trivial. The degree to
which using the wrong model reduces the optimal Sharpe ratio corresponds
to our sensitivity analysis presented above. The ‘best wrong’ model is the
normal model, followed by the model without a prior, and then the model
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with a stronger prior on standard deviations. The ‘worst wrong’ model is
the model with a stronger prior on means, followed by the model with fewer
mixture components, and then the model with fewer latent factors.

Number of assets

We estimate a small-scale version of our model, with only 10 (rather than
136) assets. The main purpose of this exercise is to examine how much
posterior uncertainty there is, and to what degree this uncertainty matters
for inference. If the posterior is very tight, then the posterior predictive
distribution (i.e. the distribution accounting for parameter uncertainty) will
be very similar to the distribution implied by the posterior mode alone.

1 US stock: size1
2 US stock: Beta5
3 US stock: Mom4
4 US stock: Health
5 Foreign stock: MSCI Europe Large Value
6 Foreign stock: MSCI World/Financials
7 Foreign stock: S&P Japan LargeMid
8 US government bond: Barclays Agency 20+ Yr
9 US government bond: Citi Treasury Bill 3 Mon

10 High yield bond: Barclays US HY Caa Long

Table 7: Small-scale model: included assets

We select the n = 10 assets listed in Table 7, but other selections lead to
the same conclusions. We use the same prior parameters as in the full model,
with one exception: for the number of latent factors we choose m = 6.
The heuristic for using this value is the same as for the big model, that
is, we impose that the first m factors capture 97.5% of the total empirical
correlation.

Following the approximation discussed in Section 3, we approximate the
posterior variance as

Σ(Xobs) = Q+ + 10−12I, Q = varX|θ̄[q(l)(θ̄, X)].

We use a scaled version of this variance matrix for a Random Walk Metropolis
chain whose stationary distribution is the posterior. Specifically, proposal
parameter draws are generated from

θnew ∼ N
(
θold, (1/10)× Σ(Xobs)

)
.
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We find that inference based solely on the posterior mode provides an accu-
rate representation of inference based on the full posterior distribution. For
instance, asset means, variances, and correlations are virtually identical un-
der the two approaches. Hence, ignoring parameter uncertainty in this paper
does not seem to be a great sin.

Finally, we find that the posterior distribution can be closely approxi-
mated by a normal approximation, with the posterior mode θ̄ as its mean,
and the Σ(Xobs) described above as its variance.

7 Conclusions

In this paper we presented a method for estimating a multivariate mixture of
Student-t distributions featuring a latent factor structure. We then applied
this method, and estimated the joint distribution of excess returns for a
set of assets spanning the global investable universe. We included prior
distributions on each asset’s mean and standard deviation, which helped to
make our results more plausible. Our model sheds new light on the question
of risk premia, since the existence of a premium is equivalent to a tilt in a
mean-variance optimal portfolio.

Our findings suggest that, at least for US stocks, there are premia for
momentum stocks, low-beta stocks, and stocks for companies with high prof-
itability. There is a tilt away from large-cap firms, but not much of a tilt
toward the smallest firms. Also, there is not much evidence of a tilt toward
value stocks or companies with high levels of investment.

There are a variety of ways in which our model could be expanded in
future work. Of particular interest would be to incorporate predictable time-
variation in the distribution of returns. Our model is entirely unconditional:
the distribution of returns is not affected by any observable variables. This
does not mean that it is ‘misspecified’; however, it is (to a degree) suboptimal
from a forecasting perspective, since it will fail to adapt to information that
changes the distribution of returns. The distribution of returns arguably does
change, in particular, it is commonly believed that both expected (mean)
returns as well as their volatility are to some degree predictable.

Appendix A: Derivative of the log-likelihood

Letting

Lt(θ) = p(xobs(t) | θ) =

g∑
i=1

πie
−λit(θ)/2, (13)
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the log-likelihood is given by
∑

t logLt(θ), using (7) and (8).
It will prove useful to introduce the weights

π̄it =
πie
−λit(θ)/2∑g

j=1 πje
−λjt(θ)/2

.

While πi denotes the prior probability that the data were generated by mix-
ture component i, π̄it can be interpreted as the corresponding posterior prob-
ability at time t. We obtain from (13):

d logLt =
dLt
Lt

=

g∑
i=1

π̄it

(
dπi
πi
− dλit

2

)
, (14)

and we thus need to find the differentials of πi and λit. We let ψ̃ = dg(Ψ̃),

so that ψ̃ contains the n diagonal components of Ψ̃. Further, ei denotes the
vector all whose components are zero except the ith which is one. We let
ξ∗ = (ξ2, . . . , ξg)

′ and S∗ = (0 : Ig−1), and we recall that ξ1 = 1. Then
ξ = e1 + S ′∗ξ∗. Finally, we let

pit = (1/φit)St(S
′
tWiSt)

−1(x(t) − S ′tmi)

and
Pit = St(S

′
tWiSt)

−1S ′t − φitpitp
′

it,

where φit = (ν + δit)/(ν + nt) and δit is defined in (10). We then obtain the
score as follows.

Proposition 1: The derivative of the log-likelihood (the score) is given
by q(l) =

∑
t qt, where qt is an N × 1 vector with components

∂ logLt
∂ξ∗

=

g∑
i=1

(2π̄it/ξ
2
i )S∗ (ξiei − πiξ) ,

∂ logLt
∂µi

= B′p∗it,
∂ logLt

∂ vech(Ṽi)
= − vech(B′P ∗itBṼi),

∂ logLt
∂ vecB

= −
g∑
i=1

vec (P ∗itBVi − p∗itµ′i) ,
∂ logLt

∂ψ̃
= −

g∑
i=1

dg(Ψ̃P ∗it),

where p∗it = π̄itpit and P ∗it = π̄itPit.

Proof: After somewhat tedious but straightforward algebra we find from (12):

dπi
πi

=
2

ξ2
i

(ξie
′
i − πiξ′) dξ = (2/ξ2

i ) (ξiei − πiξ)′ S ′∗dξ∗. (15)
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With λit given in (9), using the definitions of pit and Pit above, and applying
the matrix differential machinery from Magnus and Neudecker (1988), we
obtain

dλit = tr(S ′tWiSt)
−1S ′t(dWi)St + (1/φit)(dδit) = trPitdWi − 2p′itdmi.

Given (4) we find the differentials of mi and Wi as

dmi = (dB)µi +Bdµi

and

dWi = (dB)ViB
′ +B(dVi)B

′ +BVi(dB)′ + dΨ

= (dB)ViB
′ +B(dṼi)Ṽ

′
iB
′ +BṼi(dṼi)

′B′ +BVi(dB)′ + 2Ψ̃(dΨ̃).

This gives

dλit = trPitdWi − 2p′itdmi

= trPit(dB)ViB
′ + trPitB(dṼi)Ṽ

′
iB
′ + trPitBṼi(dṼi)

′B′

+ trPitBVi(dB)′ + 2 trPitΨ̃(dΨ̃)− 2p′it(dB)µi − 2p′itB(dµi)

= −2p′itB(dµi) + 2 tr Ṽ ′iB
′PitB(dṼi)

+ 2 tr (ViB
′Pit − µip′it) (dB) + 2 trPitΨ̃(dΨ̃),

and hence

−dλit/2 = p′itB(dµi)− tr Ṽ ′iB
′PitB(dṼi)

− tr (ViB
′Pit − µip′it) (dB)− trPitΨ̃(dΨ̃)

= p′itBdµi − [vech(B′PitBṼi)]
′d vech(Ṽi)

− vec (PitBVi − pitµ′i)
′
d vecB − (dg(Ψ̃Pit))

′dψ̃. (16)

The result follows by inserting the expressions (15) and (16) in (14). ‖

Notice that λit and dλit do not depend on µj and vech(Ṽj) (j 6= i).

Appendix B: Derivative of the log-prior

The log-prior is given by log p(θ) in (11):

log p(θ) = − 1

2τ 2

n∑
j=1

(m̄j − ρ)2 − η
n∑
j=1

w̄j,
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which is a function of the components m̄j of m̄ = Ex and the diagonal
elements w̄2

j of W̄ = var(x). Of course, other specifications of the prior
distributions of m̄j and w̄2

j (j = 1, . . . , n) are possible. To facilitate the
computation of alternative specifications we present the derivative of the
log-prior in a sequence of three propositions.

Regarding m̄ =
∑

i πimi = B
∑

i πiµi, we have

dm̄ = (dB)µ̄+B

g∑
i=1

πiµi(dπi/πi) +B

g∑
i=1

πi(dµi),

where µ̄ =
∑

i πiµi. This leads to the following differential.

Proposition 2: The differential of m̄j is given by

dm̄j = a
(1)
j

′
dξ∗ +

g∑
i=1

a
(2)
ji

′
dµi + a

(4)
j

′
d vecB,

where

a
(1)
j = (2/ξ′ξ)

g∑
i=1

(b′jµi)S∗ (ξiei − πiξ) , a
(2)
ji = πibj, a

(4)
j = µ̄⊗ ej,

and b′j denotes the jth row of B.

Proof: We have

dm̄j = e′jdm̄ = e′j(dB)µ̄+ b′j

g∑
i=1

πiµi(dπi/πi) + b′j

g∑
i=1

πi(dµi),

and the result follows from (15). ‖

Regarding W̄ we write

W̄ =

g∑
i=1

πiW
∗
i , W ∗

i =
ν

ν − 2
Wi + (mi − m̄)(mi − m̄)′,

and we obtain our next result.

Proposition 3: The differential of w̄2
j is given by

dw̄2
j = c

(1)
j

′
dξ∗ +

g∑
i=1

c
(2)
ji

′
dµi +

g∑
i=1

c
(3)
ji

′
d vech(Ṽi) + c

(4)
j

′
d vecB + c

(5)
j

′
dψ̃,
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where

c
(1)
j = (2/ξ′ξ)

g∑
i=1

(e′jW
∗
i ej)S∗ (ξiei − πiξ) ,

c
(2)
ji = 2πibjb

′
j(µi − µ̄), c

(3)
ji =

2ν

ν − 2
πi vech(bjb

′
jṼi),

c
(4)
j = 2 vec ejb

′
jV̄ , c

(5)
j =

2ν

ν − 2
ψ̃jej,

and

V̄ =

g∑
i=1

πi

(
ν

ν − 2
Vi + (µi − µ̄)(µi − µ̄)′

)
.

Proof: We write

dW̄ =

g∑
i=1

(dπi)W
∗
i +

g∑
i=1

πi(dW
∗
i )

=

g∑
i=1

πi(dπi/πi)W
∗
i +B

g∑
i=1

πi [(dµi)(µi − µ̄)′ + (µi − µ̄)(dµi)
′]B′

+ (dB)V̄ B′ +BV̄ (dB)′ +
2ν

ν − 2
Ψ̃(dΨ̃)

+
ν

ν − 2

g∑
i=1

πiB(dṼi)Ṽ
′
iB
′ +

ν

ν − 2

g∑
i=1

πiBṼi(dṼi)
′B′.

This implies that

dw̄2
j =

g∑
i=1

πi(e
′
jW

∗
i ej)a

′
i(dξ∗) + 2

g∑
i=1

πi(µi − µ̄)′bjb
′
j(dµi)

+
2ν

ν − 2

g∑
i=1

πi(vech(bjb
′
jṼi))

′d vech(Ṽi)

+ 2(vec ejb
′
jV̄ )′(d vecB) +

2ν

ν − 2
ψ̃je

′
j(dψ̃),

and the result follows. ‖

We now have all ingredients to obtain the derivative of the log-prior.

Proposition 4: The derivative of the log-prior is given by the N × 1 vector
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q(p) with components

∂ log p(θ)

∂ξ∗
= −(1/τ 2)

∑
j

(m̄j − ρ)a
(1)
j − (η/2)

∑
j

(1/w̄j)c
(1)
j ,

∂ log p(θ)

∂µi
= −(η/2)

∑
j

(1/w̄j)c
(3)
ji ,

∂ log p(θ)

∂ vech(Ṽi)
= −(1/τ 2)

∑
j

(m̄j − ρ)a
(2)
ji − (η/2)

∑
j

(1/w̄j)c
(2)
ji ,

∂ log p(θ)

∂ vecB
= −(1/τ 2)

∑
j

(m̄j − ρ)a
(4)
j − (η/2)

∑
j

(1/w̄j)c
(4)
j ,

∂ log p(θ)

∂ψ̃
= −(η/2)

∑
j

(1/w̄j)c
(5)
j .

Proof: The differential is

d log p(θ) = −(1/τ 2)
∑
j

(m̄j − ρ)(dm̄j)− η
∑
j

(dw̄j)

= −(1/τ 2)
∑
j

(m̄j − ρ)(dm̄j)− (η/2)
∑
j

(1/w̄j)(dw̄
2
j ),

and the results follow from Propositions 2 and 3. ‖
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Figure 1: Prior for mean and standard deviation
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Figure 2: Mean-variance frontier
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Figure 3: Asset means across models
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Figure 4: Asset standard deviations across models
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Figure 5: Optimal weights across models (unconstrained portfolios)
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Figure 6: Mean-variance characteristics of portfolios that are mean-variance
optimal according to each model
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